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Square patterns in rotating Rayleigh-Bénard convection
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The Kiippers-Lortz instability occurs in rotating Rayleigh-Bénard convection and is a paradigmatic example
of spatiotemporal chaos. Since the steady state of convection rolls is unstable to disturbance rolls oriented with
an angle of about 60° with respect to the given rolls in the prograde direction [G. Kiippers and D. Lortz, J.
Fluid Mech. 35, 609 (1969)], a spatiotemporally chaotic pattern is realized with patches of rolls continuously
replaced by other patches in which the roll axis is switched by about 60°. Surprisingly and contrary to this
established scenario, Bajaj et al. [Phys. Rev. Lett. 81 (1998)] observed experimentally square patterns in a
cylindrical layer in the range of parameters where Kiippers-Lortz instability was expected. In this paper we
present square patterns which we have obtained in a numerical study by taking into account realistic boundary
conditions. The Navier-Stokes and heat transport equations have been solved in the Oberbeck-Boussinesq
approximation. The numerical method is pseudospectral and second order accurate in time. The rotation
velocity of the square pattern increases linearly with the control parameter e=Ra/Ra.—1, as in the experiment
of Bajaj et al. Furthermore, it was observed that this velocity decreases when the aspect ratio of the cylinder
increases. These results indicate that the square pattern appears when the flow is laterally confined. The range

of & for which this pattern is stable tends to vanish for more extended layers.
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I. INTRODUCTION

Convection in a fluid layer heated from below and rotat-
ing about a vertical axis has long been a favored subject in
nonlinear fluid dynamics because of the onset of convection
in the form of spatiotemporally chaotic motions. In contrast
to the direct transition from a laminar to a turbulent state
observed in shear flows, the chaotic state of a rotating con-
vection layer is induced already at infinitesimal amplitudes
of convection by the Kiippers-Lortz (KL) instability [1].
Here it must be kept in mind that onset of convection in a
rotating layer for Prandtl numbers of the order unity or larger
is always supercritical (see Ref. [2]). Typically, convection
rolls become unstable to disturbances in the form of rolls
oriented with their horizontal axis at an angle of about 60° in
the sense of rotation with respect to the original rolls. As the
disturbance rolls grow and replace the original pattern they
themselves become unstable to disturbance rolls with an
angle of 120 ° relative to the orientation of the original rolls.
As this process occurs in an uncorrelated fashion in patches
throughout the convection layer, it involves a spatio-
temporally chaotic state. Starting with the early experiment
of Heikes and Busse [3], (see also Refs. [4,5]), the KL chaos
has been investigated in numerous laboratory studies as in
Refs. [5-8] as well as in numerical simulations as in Refs.
[9-11]. Nevertheless, theory and experiment disagree with
respect to the dependence on & of typical length and time
scales which describe the KL state. A possible explanation
for these disagreements was suggested by Hu et al. [5] and is
related to the sidewall, which generates defects traveling into
the bulk (see also Ref. [12]). Since the defects travel at a
constant speed rather than diffusively, they could influence
the system interior. These authors conjectured that the de-
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fects break up the KL domain and thus alter the characteristic
length and time scales.

In contrast to the nonrotating case, sidewalls exert a de-
stabilizing effect in the case of a rotating layer. Experimental
observations of the characteristics of traveling waves caused
by the sidewall have been reported and investigated by many
researchers (see, for instance, Zhong et al. [7], Hu et al. [5],
Ning and Ecke [13], Liu and Ecke [14,15], and Ecke and Liu
[16]). The convection waves attached to the wall propagate
in the retrograde direction. For theoretical studies of the on-
set of convection caused by a sidewall we refer to Goldstein
et al. [17], Herrmann and Busse [18], and Kuo and Cross
[19]. The dynamics of the sidewall modes may be described
by a complex Ginzburg-Landau (CGL) equation. The coeffi-
cients have been measured in experiments [13,14] and ob-
tained from the solutions of the Navier-Stokes equations
[20]. In Ref. [20] the mean flows originating from two
counter-rotating traveling waves in an annular cavity have
also been investigated.

Surprisingly, and contrary to theoretical predictions
(Clever and Busse [21]), Bajaj et al. [22] observed in a I’
=4.8 circular layer (I'=R/d, with R the cavity radius and d
the height of the layer) that for Q=2mfd*/v=70 (f is the
rotation frequency and v the kinematic viscosity) the nature
of the pattern near onset changed. Instead of typical KL pat-
terns, square patterns were found to be stable although the
bifurcation remained supercritical. This pattern slowly ro-
tates in the prograde direction relative to the rotating cylin-
drical box and qualitatively its properties are the same for
argon at Prandtl number 0=0.69 and for water at o=5. Thus,
we are faced with a major disagreement with theoretical pre-
dictions in a parameter range where one might have expected
the theory to be reliable.
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It is possible to reproduce the square pattern in numerical
simulations. A picture of a computed square pattern, obtained
by solving numerically the Boussinesq equations with a
forced circular confinement, is included in Fig. 43 of the
review article of Bodenschatz, Pesch, and Ahlers [23]. How-
ever no quantitative results from these simulations have be-
come available.

The purpose of this numerical study is to investigate the
properties of the square pattern and its dependence on rel-
evant parameters. Rotating Rayleigh-Bénard convection is
examined in realistic cylindrical cavities of moderate aspect
ratio (I'=3 and 5) using a pseudo spectral technique. After
describing the basic equations of the problem and the nu-
merical methods employed for their solution in Sec. II, we
discuss the main results obtained in Sec. III. In the choice of
the parameters we are guided by experimental studies of Ba-
jaj et al. [22] and Ecke and Liu [16]. In general, a good
agreement between numerical simulations and experimental
measurements is found. Additional results for which experi-
mental counterparts do not yet exist will also be presented.
Concluding remarks are given in Sec. IV.

II. MATHEMATICAL AND NUMERICAL MODELS

Rayleigh-Bénard convection is described by the Bouss-
inesq equations for the velocity vector v and the heat equa-
tion for the temperature 7T relative to the rotating frame of
reference as follows:

av Ra
—+0v-Vv==VP-207i X v+ V?v+ —T%,

ot o )

V-v=0, (2)
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oT 1,
—+v-VI'=—V-T,
ot o

3)

where () is the Coriolis number defined in the introduction.
The Prandtl number o and the Rayleigh number Ra are de-
fined by o=v/k,Ra=agATd*/(vk), where a,x and v are
the thermal expansion coefficient, thermal diffusivity, and
kinematic viscosity of the fluid; g is the gravitational accel-
eration and Z is the unit vector in the axial direction (opposite
to the direction of gravity). AT=Tjo— Teoq 1S the temperature
difference applied between the boundaries. The height
d,d*/ v, and v/d, are used as scales for length, time, velocity,
respectively. The temperature is made dimensionless using
AT:T=(T"-T,)/AT where T,=(Tyo+Teqia)/2 and T" is the
dimensional temperature.

It is convenient to write these equations using a cylindri-
cal polar coordinate system (r, 6,z). The corresponding ve-
locity components are v=(u,v,w). The centrifugal force is
not included because the limit of (27f)?R/g<<1 is assumed.

Conducting as well as insulating boundary conditions for
the temperature at the vertical sidewall have been consid-
ered. For the velocity, no-slip boundary conditions (#=v
=w=0) apply on all walls since these are fixed in the rotating
frame of the cavity.

The spatial discretization of the equations is achieved
with a pseudo spectral collocation-Chebyshev expansion in
both the radial and the axial directions and a Fourier-
Galerkin method is used for the azimuthal dependence [24].
The velocity-pressure coupling problem has been overcome
by the use of a projection scheme for time discretization
[25], also called the fractional steps or splitting method,
which consists in solving the momentum and the continuity

TABLE 1. Summary of the numerical results. (), is the angular velocity rate of squares, (1, is the angular velocity rate of the wall mode,

and w,, is its angular frequency.

Bulk Wall
r QO o Ra, € O, (d*/v)™! T, (d*/v) k k=m/T m o,,(d*/v)7! Q,(d?/v)!
Insulating sidewall

5 274 6.4 33029 0.004 0.4x1073 58 8.4 52 26 -5.0 -0.192
0.019 0.5x1073 23 8.5 52 26 =5.1 —-0.196
0.044 23 8.0 52 26 =52 —-0.200

3 274 6.4 33302 0.016 0.2Xx 1072 12 8.4 3.7 11 -5.087 —0.463
0.032 0.5Xx 1072 11 8.6 3.7 11 -5.134 —-0.467
0.057 0.8x 1072 8 8.9 3.7 11 -5.207 —-0.473

3 274 0.7 33302 0.016 -2.6X 1072 7.5 3.7 11 —45.631 —4.148
0.032 7.6 3.7 11 —45.873 -4.170
0.057 -2.86x 107! 8.3 3.7 11 —45.607 —4.237

3 180 0.7 19255 0.008 6.5 3.7 11 -32911 -2.992
0.023 -3.78x 107! 7.1 3.7 11 -32.938 -2.994
0.091 7.3 3.0 9 -34.773 —-3.864

Conducting sidewall

5 274 6.4 33029 0.019 0.8%x1073 8.6 7.8 39 -1.1 —-0.029

3 180 0.7 19255 0.023 6.9 5.7 17 —-12.004 -0.711

3 274 6.4 33302 0.016 2.4x1073 39 8.2 7.3 22 -5.68 -0.258
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equations in two main steps. First, a predicted velocity field,
which is not divergence-free, is computed from the dis-
cretized momentum equations. In a second step, this velocity
field is corrected in order to satisfy the incompressibility
constraint. Here, a preliminary step is introduced in which an
intermediate pressure field is computed from the Navier-
Stokes equations. This preliminary pressure, which is taken
into account in the computation of the predicted velocity
field, allows the normal pressure gradient at the boundary to
vary with time. Moreover, it involves a better attainment of
the incompressibility constraint at the boundary. The time
scheme is semi-implicit and second-order accurate [26]. For
I'=5 spatial grids of 49X 128X 11 and 49 X 128 X 19 in the
radial, azimuthal, and axial directions, respectively, have
been employed, and grids with the meshes 35X 96X 9 and
35X 96 X 19 have been employed for I'=3. The time step
used is 6=7.3 X 10™*. Numerical solutions were found to be
nearly the same for both meshes except for small shifts in the
critical value of the Rayleigh number. Details on the accu-
racy of the numerical method are given by Serre and Pulicani
[26]. The performance of the solver has been optimized for a
vector-parallel supercomputer, here a NEC SX5.

III. RESULTS

The numerical solutions have been obtained for 0=6.4
and 0.7. The nonlinear regimes have been studied numeri-
cally in cylindrical boxes with moderate aspect ratios of I'
=3 and 5, and for two rotation rates 1=180 and 274. A
survey of the results is given in Table I.

The critical value of Ra is obtained by extrapolation of the
Nusselt number Nu=®/(KAT/d) (® is the flux of heat and
K is the coefficient of heat conduction), to its intersection
with the conduction value Nu=1. We define a reduced con-
trol parameter e=Ra/Ra,—1. In both I'=3 and 5 boxes the
patterns encountered were qualitatively similar and cellular
patterns have been found near the onset in a short range of &,
preceding a Kiippers-Lortz-like state.

In typical experiments, shadowgraph visualization shows
only the vertically averaged index-of-refraction variations.
An analogous presentation of the numerical results can be
obtained when the interesting properties of patterns are ex-
hibited through suitable projections of the three-dimensional
(3D) hydrodynamic description onto the 2D horizontal plane.
In this paper, the results are shown by using a smoothed
black and white representation of the isotherms in the hori-
zontal plane at mid-height: dark regions indicate warm up-
flows and bright regions indicate cold downflows.

In the following we first discuss the results obtained for
insulating sidewalls and o=6.4, then turn to the conducting
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FIG. 1. Temperature pattern at mid-height for
I'=5, 0=6.4, Q=274 (Ra""*=33 029). Dark regions are warm up-
flows and bright regions are cold downflows. (a) Wall mode at Ra
=21 380, (b) rhombic pattern at £=0.0006 (the white circle indi-
cates the cellular pattern region), (c) square pattern at e=0.004, (d)
square pattern with a time dependence reminiscent of the Kiippers-
Lortz process at £€=0.019, and (e) spatially disordered pattern at &
=0.22.

sidewalls with 0=6.4, and finally consider results obtained
for 0=0.7.

A. Results for insulating sidewalls with =6.4

In the cylindrical box of I'=5 with insulating sidewalls
and rotating at {1=274, the flow patterns for 0=6.4 and for
increasing values of Ra are shown in Fig. 1.

The conductive solution is stable at low Ra numbers
(Ra=<20000) and the first transition to an oscillatory flow is
due to the presence of the sidewall. It corresponds to the
onset of a rotating wave which can be seen in Fig. 1(a) for
Ra=21380. There are 21 convective rolls traveling in the
retrograde direction with an angular frequency of about w,,
=-3.8 and a wave number k=4.2 [(k=m/I"), where m is the
number of convective rolls around the circumference]. The
sign of the frequency w,, is defined by the dependence
expli(m6-w, )] of the dominant Fourier component. As it is
shown in Table II, the essential characteristics of this side-
wall traveling wave are consistent with the experimental re-
sults [16,18] as well as with the results of the linear stability
analysis [11,27]. The critical Rayleigh number for the con-
vection in the bulk is Ra,=33 029 (1=274), which agrees
well with Chandrasekhar’s linear stability calculation [28]
for a laterally infinite system (Ra,=32 840 at 1=270). The
shadowgraph of the flow at £=0.0006 is presented in Fig.
1(b) and the convection pattern in the center does not show a
clear regularity. Only at higher values of & the pattern as-
sumes fourfold coordination, it is seen in Figs. 1(c) and 1(d).
The cellular pattern occurs within a circular region of radius

TABLE II. Characteristic parameters of sidewall convection. Results for insulating sidewall.

Ra o r Q ,(d*/ k)" k(miT)
Ecke and Liu [16], experiments 21380 6.4 5 274 -3.5
Ning and Ecke [13], experiments 21600 64 25 271 -3.6 4.39
Net and Mercader [27], linear stability analysis 22000 6.8 25 270 -3.5 3.6
Present results, direct numerical simulation 21380 6.4 5 274 -3.8 4.2
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FIG. 2. A sequence of three-dimensional representations
equidistant in time (from i to vi) with Ar=60(d*/v) showing
the  temporal evolution of the  structure  function.
I'=5, 0=6.4, =274, £=0.019. The amplitudes of the two sets of
rolls grow and decay in an alternating way.

R, that increases with & [see Fig. 1(b) where R,,/I'=0.3 at
£=0.0006 and Fig. 1(c) where R, /I'=0.58 at £=0.004] to a
maximum value R,,/I'=0.75, owing to the presence of the
wall mode [Fig. 1(d)]. As the spiraling rolls emerging from
the sidewall convection [Figs. 1(b) and 1(c)] indicate the
interaction of the sidewall mode and the square pattern
seems to occur over a fairly wide annular region.

Once the square cell pattern is established two types of
time dependence can be distinguished. The amplitudes of the
two sets of rolls with perpendicular axes of which the square
cell pattern is composed grow and decay with time in an
alternating way (see Figs. 2 and 3). A preferred direction is
observed in the pattern when the amplitude of one set of rolls

025

02
)
=015

a1

Q.05

Timme [units of d°AV]

FIG. 3. Measurements of the square of the maximum amplitude
of the two modes making up the square pattern at different time
instants. (I'=5, Q=274, 0=6.4, £=0.019). The lines are only a
guide to the eye.
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FIG. 4. On the left, patterns in the bulk are shown in the Carte-
sian frame centered on the axis of the cavity. On the right, corre-
sponding structure function of the bulk region are plotted. The pa-
rameters are ['=5,0=6.4, =274, £=0.019 (a) and (b) 0.044.

is more intense than that of the perpendicular set. The aver-
age period of this oscillation is indicated in Table I as T .
The second clearly distinguished time dependence is a slow
rotation of the square pattern in the prograde direction. The
corresponding angular velocity is indicated in Table I as (),

In order to characterize the spatial pattern we show the
structure function S(k) (square of the modulus of the Fourier
transform) of the temperature at mid-height and for a region
in the bulk [Fig. 4(a)]. At £=0.019 the cells form a near-
perfect square lattice, which slowly rotates in the direction of
the system rotation (prograde direction) in agreement with
experiments of Bajaj et al. [22].The angular velocity rate is
Q,,~5x10™ (time is scaled with d*/v as in the definition
of Q) relative to the rotating frame of the cavity (Table I).

Results for (), (e) are shown in Figs. 5(a) and 5(b) for
both I'=5 and 3 cavities, respectively. In Fig. 5(a), a numeri-
cally derived point at £=0.019 is represented together with
experimental results of Bajaj ef al. [22] obtained at larger &
and for 1=170,0=5.4, and '=4.8.

The results show that (), depends linearly on & and that
Q,,(e) —0 when &—0, as suggested by the experimental
results [22].

The flow is thus composed of two patterns: a square pat-
tern slowly rotating in the bulk together with azimuthally
periodic rolls adjacent to the circular sidewall (wall convec-
tion mode). As previously mentioned, the wall mode is trav-
eling much faster in the opposite direction with a frequency
,,~ -5 which is nearly independent of . The wall mode is
associated with a mean zonal flow the average of which over
time and over the z coordinate has been plotted in Fig. 6.
This zonal flow is too weak to explain the rotation of the
square pattern. It also has the wrong direction and is confined
to the region of the sidewall convection.

The square pattern is stable in a narrower range of ¢ (e
< €,,,v=0.019 at =274) than in experiments [22] performed
at slower rotation rates: 0<e=<eg,,,,=0.13 at 1=170 and 0
<e<g,,,=0.12 (2=181). This behavior suggests that at
still higher () square patterns may disappear.

At larger e,e>¢,,,, the flow exhibits some elongated
parallel rolls which rotate and undergo sudden changes of
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FIG. 5. (a) The rotation rate (), of the square lattice for
0=274,T'=5, and 0=64 (solid point) and the results of
Bajaj er al. [22] for =170, I'=4.8, and 0=5.4 (empty points). (b)
The rotation rate (), of the square lattice for =274, I'=3, and
0=6.4. Time is scaled with d*/v.

preferred direction as expected on the basic of the KL insta-
bility. The switching angle is about 50° in the present case
(see for example Fig. 7). The corresponding structure func-
tion S(k) is shown in Fig. 4(b). At £=0.22 the pattern seems
more spatially disordered [Fig. 1(e)], with shorter rolls wan-
dering, breaking, and forming preferred orientations that
change in discrete steps. Visualizations at different time steps
reveal that the orientation changes are discontinuous. The
average wave number of this state is k=8.2.

In the smaller-aspect-ratio cavity, I'=3 (insulating side-
wall), convection in the bulk sets in at a slightly higher Ray-
leigh number (Ra,=33 302) for 6=6.4 at (=274 than in the
I'=35 cavity (Ra,=33029). At £=0.032 the time behavior is
oscillatory near the sidewall, associated with a wall mode
that rotates with retrograde angular velocity €, ,=
-0.467(Q),,=w,,/m), and in the bulk, the square pattern ro-
tates with {3;, =~0.005. The rotation rate of the square pattern
is much faster (by about ten times) than in the I'=5 cavity
(Fig. 5) suggesting that (), strongly decreases with increas-
ing I'. This result confirms the expectation of Ref. [22] and
indicates again that the rotation of the squares is a property
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FIG. 6. Azimuthal mean flow averaged over vertical direction
and time for I'=3, Q=274, 0=6.4, £=0.016, conducting (dashed
line) and insulating (solid line).

of the finite system. As mentioned above, at larger e(e
=0.057), the pattern and its dynamics exhibit similarities
with the Kiippers-Lortz instability.

B. Results for conducting sidewalls with o=6.4

Since the critical Rayleigh number for onset of sidewall
convection increases with the thermal conductivity of the
sidewall (see, for example, Ref. [18]) sidewall convection is
much weaker in the case of a well-conducting sidewall. The
intensity of the sidewall convection decreases by about 85%
and 80% for I'=5 and 3, respectively, when the thermal con-
ductivity is increased from zero to higher values at a Ray-
leigh number of the order of 33 500. Consequently the mean
flow generate by the sidewall convection in the conducting
case is also weaker as indicated in Fig. 6. The mean zonal
flow in the interior is essentially negligible.

The wave speed of sidewall convection is lower (Table I)
and the bulk pattern extends closer to the wall than in cases
with insulating boundary conditions [see Figs. 8 and 1(d)].
For this reason a very regular square pattern can be formed
even in the case I'=3 as shown in Fig. 9. In the case of
insulating sidewalls the dominance of the sidewall convec-
tion usually prevents the establishment of such a regular pat-
tern. While the regular square pattern in Fig. 9 lasts for about
110 vertical diffusion time, it is subsequently followed by an

FIG. 7. KL state for I'=5, 0=6.4, (=274 at £=0.044. The
pattern is shown at three subsequent time steps separated by the
time 2.92(d*/v).
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FIG. 8. Square pattern with a conducting sidewall for
I'=5, 0=6.4, =274 at £=0.019. The initial condition is the one
obtained at the same Rayleigh number using an insulating sidewall
[Fig. 1(d)].

interval of more irregular pattern. Only after another interval
of 100 diffusion time it tends to return to a regular square
pattern. This intermittent dissolution of the square pattern
and its reappearance reminds one of the similar process seen
in the experiment of Bajaj et al. [22]. Less clearly seen in the
experiments is the oscillation of the roll components. Even in
the regular phase of the square pattern the two roll compo-
nents of the square lattice vary in their amplitude as shown in
Fig. 10.

C. Results for 0=0.7 in the case of insulating sidewalls

Simulations in the I'=3 cavity have also been performed
at a smaller Prandtl number, 0=0.7. The critical Rayleigh
numbers and wave numbers do not change much with the
Prandtl number (Table I) as expected from linear theory [28].
Nevertheless, the wall mode extends further into the bulk
and forms spiral arms still rotating in the retrograde direc-
tion, but with about nine times larger velocity than at o
=6.4 (Table I). In the interior, the pattern is still cellular, but
the flow tends to organize a hexagonal structure with sixfold
symmetry [Fig. 11(a)]. The pattern is dynamically disrupted
by many defects originating in the transition region between
the bulk pattern and the wall mode structure. The interaction
between both structures appears to be stronger than at o
=06.4. Further, the influence of the wall structures is so large
at 0=0.7 that the bulk mode is now swept by the wall mode.
The near 2:1resonance of the m=11 wall mode and the m
=6 bulk pattern is sufficient to drive the bulk pattern in the
retrograde direction, at least in the time average. At the lower
value (=180 the coupling between sidewall and outer bulk
pattern is even stronger than at =274 because of the near

evolution of the

FIG. 9. Temporal pattern  for
'=3, O=274, 0=6.4, £¢=0.016 with conducting sidewalls. The
time between two figures (from i to xii) is AT=21.9(d*/v).

1:1 resonance with the m=9 wall mode. The bulk pattern
actually separates into three concentric-ring-like structures
which rotate with increasing rate with increasing radius as
indicated in Fig. 11(b). Certain jumps in the angular orienta-
tion seem to occur.

o4 : 0 ; : . . T . . .

0 50 100 150 200 250 300
Time [units of dzlv]

FIG. 10. Temporal evolution of the square of the maximum
amplitude of the two modes making up the square pattern.
I'=3, 0=274,0=6.4, £=0.016, conducting sidewalls.
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Cavity rotation

oo m—

FIG. 11. (a) Cellular patterns for =0.7, I'=3, =274 close to
the onset of bulk convection (£=0.016), showing hexagonal
structures in the bulk and spiral arms related to wall
convection. (b) Disordered cellular patterns for
0=0.7, I'=3, =180, and £=0.091. The bulk pattern separates
into three concentric-ring-like structures which rotate with different
velocities, Q,=-3.9, Qp=—1.6, Q-=-0.46, Qp=6.5.

IV. CONCLUDING REMARKS

In all simulations a cellular pattern has been found at the
onset of convection in the bulk. At 0=6.4(I'=5,3), a regular
square pattern is often seen in a range of small & preceding a
KL-like state with a switching angle of about 50°. The
square pattern exhibits oscillations in the amplitudes of its
two roll components and rotates with a small prograde ve-
locity. Our results suggest that (0, (g,I') =0 for I'— and
show that ), (e,I') =0 for £ 0. In the case 0=0.7 with
I'=3 and insulating boundary conditions a hexagonal pattern
is found which is more irregular and is disrupted by the
spiral arms connected to the sidewall convection. Moreover,
because of the strong interaction between wall and bulk
modes the latter rotates in the retrograde direction.

The present results show that, neither deviations from the
Boussinesq approximation nor the presence of the centrifugal
force, which are present in the experiments, but neglected in
the theory, need not be invoked to explain the occurrence of
the square patterns instead of the expected Kiippers-Lortz
state. Moreover, as already mentioned in Ref. [10] the nu-
merical results confirm that impurities or poorly conducting
boundaries in experiments cannot serve as an explanation
either. Finally, the present results show that the nature of the
sidewall boundary conditions (insulating or conducting) does
not influence significantly the cellular characteristics of the
convection patterns in the bulk.

For an understanding of the competition between square
pattern convection and convection rolls it is important to
start with the fact that both patterns are unstable in an infi-
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nitely extended layer. Rolls are unstable because of the
Kiippers-Lortz mechanism witch tends to replace them with
new rolls oriented with angle of 60° in the prograde direction
relative to the given rolls. With increasing () this angle tends
to decrease and assumes a value of only 50° as usually found
in our simulations. Square pattern convection is unstable ow-
ing to the property that one of the participating rolls tends to
grow at the expense of the other one. This process is notice-
able in the form of small oscillations of the rolls components
even in the case when a perfect square pattern seems to have
been realized. The interaction with the sidewall mode ap-
pears to stabilize the square pattern mainly because rolls are
always unstable where they are oriented tangentially to the
sidewall. Each of the two types of rolls thus receives a boost
from the part of the wall to which they are nearly orthogonal.
At this point the question may arise as to why are hexagons
not found instead of squares. The answer is that in contrast to
the square pattern hexagons are also subject to the Kiippers-
Lortz instability in that in a cyclic fashion one of the three
roll components is always decaying (see Refs. [4,29]). Only
in the rather confined simulation of the case I'=3,0=0.7,
with insulating sidewalls and with dominating sidewall con-
vection, could the three fold coordination typical for hexago-
nal cells be observed.

The slow rotation in the prograde direction of the square
pattern is apparently caused by the interaction with the side-
wall mode. While the latter travels in the retrograde direc-
tion, the reconnections that happen persistently between
sidewall and interior eddies appear to impart the slow pro-
grade rotation on the bulk pattern. In the case of larger aspect
ratio I'=5 the fact that two subsequent Kiippers-Lortz pro-
cesses tend to reinforce the second roll component of the
square pattern may also play a role. Because twice the pre-
ferred angle of about 50° is a bit larger than 90° the Kiippers-
Lortz instability thus tends to reinforce the perpendicular
rolls and at the same time imparts a slow rotation in the
prograde direction.

It is obvious from the preceding discussion that more de-
tailed theoretical studies of the interaction between sidewall
convection and bulk pattern convection are desirable. It is
hoped that the numerical simulation presented in the paper
together with the experimental observations published in the
literature will stimulate such studies.
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